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Noise-induced coherent oscillations in randomly connected neural networks
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We study the dynamics of randomly connected excitatory networks of excitable spike-response neuron
models. Large networks can exhibit a nonmonotonic collective response to a stimulation when the coupling
strength between neurons lies within an appropriate range. With such a coupling, noise imposed upon neurons
induces synchronization of the units and oscillations of the network activity, consisting of a succession of
bursts. Furthermore, the regularity of this rhythmic activity goes through a maximum as the noise amplitude is
increased. This nonmonotonic dependence on the noise amplitude relies on the fact that noise acts in two
antagonistic ways. Noise of low amplitude shortens the interval between two successive bursts, leading to an
increase of the dynamics regularity, whereas noise of strong amplitude deteriorates the regularity of the
dynamics during a burst. In order to study the influence of the noise amplitude and the coupling on the
generation of collective oscillations quantitatively, we consider a simpler network model of excitable units. We
derive a discrete map, including the noise amplitude and the coupling strength as parameters, which describes
the network dynamics in the limit of a large number of neurons. This map reproduces all characteristic features
of the activity dynamics obtained with simulated networks. From the analysis of the bifurcation structure of
this map, we obtain parameter regions where noise-induced oscillations occur. Using this map we also study
the effect of the network connectivity on the generation of oscillations. We show that such noise-induced
coherent oscillations in fully connected networks are related to special initial conditions, and are sensitive to
perturbations, whereas they can be the only asymptotically stable regime in sparsely connected networks.
@S1063-651X~98!06909-8#

PACS number~s!: 87.10.1e, 07.05.Mh
s

u
in
’s
e

t

ca
nc
d
im
ik
sh
he
ise
o

is
pi
th

ls
ge
e,
o
a

bi-
ion,
t the
de.

e
e
ter-
the
tem

in
fast
his
by

e-
ime
re-
ys-
ise
to

lar,
e

sing
uced
r
tion
dis-
bil-

ism
of
ise
I. INTRODUCTION

The presence of noise can influence information proce
ing by nerve cells~for a review, see Ref.@1#! in several
ways. For instance, noise can linearize a neuron’s inp
output transfer function in response to suprathreshold s
like periodic inputs@2#. Noise can also smooth the neuron
response to steplike inputs@3#. The mechanisms of thes
effects have been analyzed theoretically@4#.

Noise of an appropriate level may also help neurons
detect subthreshold periodic@5# or aperiodic signals@6#. Ex-
tensive theoretical studies of this noise effect have been
ried out @7#. These have shown that stochastic resona
~SR! may be one possible mechanism by which noise mo
fies signal processing in neurons. SR means that an opt
level of noise maximizes the regularity of the neuron sp
train, or maximizes the fidelity of its response to a subthre
old input. For instance, one manifestation of SR occurs w
there is matching between the time scale of the no
induced firings and the input signal period or the period
some autonomous subthreshold oscillations@8#. Thus one
striking effect of SR is that, for an appropriate range of no
amplitude, the neuron generates a close to periodic s
train. Such a behavior is related to the periodic nature of
input.

Meanwhile, noise-induced coherent dynamics have a
been reported in the absence of periodic modulation. Si
and Horsthemke@9# showed that an excitable ring devic
when placed close to a saddle-node bifurcation, displays
cillations with a dominant frequency. Another numeric
work was later carried out by Rappel and Strogatz@10#, who
PRE 581063-651X/98/58~3!/3610~13!/$15.00
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considered a system with two simultaneous saddle-node
furcations. They observed that, close to such a bifurcat
noise accelerates the slow parts of the trajectories, so tha
oscillation frequency increases with the noise amplitu
This work followed the numerical investigations of the sam
system by Ganget al. @11#, who moreover reported that th
coherence of these oscillations was maximized at an in
mediate noise amplitude. Therefore, this work showed
existence of SR in an autonomous system, i.e., in a sys
without external forcing.

As pointed out by Rappel and Strogatz, a key feature
these results was the differential response of slow and
dynamics to external fluctuations. The importance of t
factor in noise-induced coherence was further confirmed
Pikovsky and Kurths@12#. These authors analyzed the r
sponse of the FitzHugh neuron model in the excitable reg
under the sole influence of white Gaussian noise. They
ported that various measures of the regularity of this s
tem’s dynamics were maximized at an intermediate no
amplitude. Pikovsky and Kurths showed that, in response
noise of low amplitude, the discharges were highly irregu
due mainly to the large variability in the first passage tim
between the resting state and the firing threshold. Increa
the noise level regularized the discharges, because it red
this variability without much affecting the time required fo
the system to come back to its resting state once an ac
potential was generated. Higher noise levels, however,
torted this recovery process, and led to an increased varia
ity. In the present study, we show that a similar mechan
can lead to noise-induced coherent activity in networks
neuron models. Regular activities in the presence of no
3610 © 1998 The American Physical Society
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PRE 58 3611NOISE-INDUCED COHERENT OSCILLATIONS IN . . .
have already been reported in periodically driven netwo
of coupled oscillators or excitable units@13#.

Noise alone, without periodic input, can also induce s
chronized oscillations. This phenomenon was analyzed
networks of globally coupled active rotators@14#. Isolated
active rotators switch from excitable to oscillating regim
through a saddle-node bifurcation, and their response
noise is, thus, similar to what has been reported in@9,11,10#.
When each excitable unit is close to the saddle-node bi
cation, coherent oscillations appear at intermediate noise
els. Recently, Kurrer and Schulten proposed a new appr
mation to reexamine this phenomenon, and found sim
transitions between coherent and incoherent states at i
mediate noise levels@15#. Coupled active rotators interac
‘‘diffusely’’ in the sense that the influence of one unit upo
another is a smooth function of their phase difference. Y
even when network units interact by pulses, noise alone
lead to synchronous regular discharges in coupled excit
systems. Rappel and Karma@16# observed this phenomeno
in numerical simulations of globally pulse-coupled integra
and-fire neurons. They showed that the periodicity of
overall network activity is a humped shaped function of t
noise amplitude. They also indicated that this phenomeno
more pronounced when the numberN of network units is
large.

We present a form of noise-induced partial synchroni
tion and coherent collective oscillations in excitatory n
works of spike-response neural models@17–19#. In a previ-
ous study, we have shown that, with this type of model,
whole network can behave like an excitable system@20#. In
this paper, we analyze the influence of noise on the dynam
of such networks. We show that noise can induce collec
oscillations, provided the coupling strength of the netwo
units lies within an appropriate range. In this range of co
pling, there exists an optimal value of the noise amplitu
maximizing the coherence of the oscillations. We also c
sider a simpler network model whose dynamics can be
scribed by a discrete map. From the bifurcation diagram
this map, we determine the ranges of the coupling and
noise amplitude where coherent oscillations are possi
Theoretical results are in agreement with simulations.
nally, we show that the conditions under which oscillatio
can be obtained depend on the connectivity of the netw
and are quite different with fully or sparsely connected n
works.

This paper is organized as follows. The network mo
and simulation results are described in Sec. II. In Sec. III,
introduce a simplified network model and derive a discr
map that gives its dynamics. Then we analyze the bifurca
structure of this map. In Sec. IV, we examine the effect
connectivity. The paper is concluded in Sec. V.

II. COHERENT OSCILLATIONS

A. Network model

The network model used through this study consists o
randomly connected population ofN excitable units. When
building the network, connections are randomly chosen: n
ron j connects to neuroni ( iÞ j ) with probability K/(N
21), so that each connectionci j is the realization of a Ber-
noulli random variable of parameterK/(N21) andcii 50. K
s
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will be referred to as the connectivity parameter. It cor
sponds to the mean number of connections emitted or
ceived by a neuron. Each neuroni (1< i<N) is described
by its membrane potentialVi . For the sake of convenienc
Vi is represented in dimensionless units, and the res
value of the potential is set to zero. The neuron sums
inputs over time, since its last discharge timeTi . OnceVi
overtakes a threshold valueu, the neuron fires, sends outpu
to other units, and immediately resets its potential. The n
ron model is similar to the spike-response neuron mo
@17–19# with absolute and relative refractory periods. A
time t, Vi(t) is given by

Vi~ t !52` if 0<t2Ti<t ref , ~2.1!

Vi~ t !5U~ t2Ti !1
J

K(
j 51

N

ci j E
Ti

t

I i~u!du

otherwise,

I i~u!5 (
t j
f
.Ti2di j

d~u2di j 2t j
f !v~ t2u!, ~2.2!

U~ t !5Umexp~2t/tm!, ~2.3!

wheret ref is the duration of the absolute refractory period,J
is the coupling constant,t j

f are the firing times of neuron
j , Um is the after-spike hyperpolarization, andtm is the po-
tential recovery time constant which determines the dura
of the relative refractory period.U(t2Ti) will be referred to
as the refractory state of neuroni at time t. When neuronj
fires, neuroni receives, after a time delaydi j , an excitatory
input given by

v~ t !50 if t,0,

v~ t !5~ t/t r !exp„2~ t2t r !/t r… if 0<t<t r ,

v~ t !5„~ t1t f2t r !/t f…exp„2~ t2t r !/t f… if t.t r .
~2.4!

The shapes of two different types of such excitatory-po
synaptic potentials~EPSP’s! are presented in Fig. 1. Noise
introduced by giving to a neuron with potentialVi at time t
the following probability of firing betweent and t1dt:

p5dtr„u2Vi~ t !…, ~2.5!

wherer is a sigmoidal function whose maximal slope d
creases with the noise amplitudes2. Such a definition of
stochastic firing gives realistic spiking statistics to the neu
model @17#.

Through this study, we use the following set of para
eters: u52.1, t ref51 ms, K515, Um528, tm525 ms,
and t r51 ms, t f52 ms. The membrane potential is e
pressed in the number of EPSP amplitudes. Thus a fi
threshold of 2.1 means that a neuron with potential close
the resting value must receive more than two EPSP’s wit



-

n
fo
e
n

th

fo

a

te
in
u

ou
n

he
o

he

se
bout
-
in

ke
sion

in-
re-

her
dies
ns
ively
ew
t of
the
e

s of

re-
he

t is
P’s

ers.
ue
is
In-

k is
ory
can
t,
the
eu-
. If
h-
p-
re

igh
gh
ring

ing
el

n
(

a
ant
n-
an-
ac-
ith
e
an

.
(

he

3612 PRE 58J. PHAM, K. PAKDAMAN, AND J.-F. VIBERT
a short time interval to discharge. The delaysdi j are distrib-
uted according to a truncated Gaussian law, over@1;10#, of
meand55 ms and variance 1 ms2. r is the Gaussian rep
artition function with mean zero and variances2. Network
simulations were run with a time stepDt50.2 ms and with
N51000 neurons. Controls run with smaller time steps a
larger network sizes led to the same results. In order to
low how spiking evolves during time within the network, w
define the activity levelS(t) as the total number of spikes i
the network, normalized by the numberN of units, during
the time interval@ t2tw ;t# wheretw51 ms.

B. Effect of the coupling strength

First we examine the effect of the coupling strength on
network behavior. Figure 2 presents the dynamics ofS and
the corresponding normalized autocorrelation functions
four values of the coupling constantJ, with s251. The nor-
malized autocorrelation at a time lagl ms is defined by

C~ l !5
^S̃~ t !S̃~ t1 l !&

^~S̃!2&
, S̃5S2^S&. ~2.6!

With a weak coupling (J51), the activity levelS is low
and shows only small random fluctuations around its me
as indicated by the autocorrelation.S(t) is close to the su-
perposition of the independent firing processes of isola
neurons driven by noise. As the coupling increases, spik
of the neurons become less independent, and quite reg
oscillations of the activity level appear (J56). The ampli-
tude of these oscillations increases smoothly with the c
pling strength, and the time course ofS tends to a successio
of bursts of activity (J512). These oscillations ofS indicate
a partial synchronization: a non-negligible fraction of t
neurons tend to fire simultaneously, or at least within a sh
time window.

At the beginning of a burst, for most of the neurons, t
refractory stateU is close to zero@see Fig. 3~a!#, and noise

FIG. 1. Excitatory-post-synaptic potential~EPSP! v(t) @Eq.
~2.4!# as a function of timet after the firing of a presynaptic neuron
Two different types of EPSP’s are presented: short lastingt r

51 ms and t f52 ms) and long lasting (t r56 ms and t f

55 ms). The potential is normalized by the amplitude of t
EPSP, so thatv(t) is dimensionless and is between 0 and 1.
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brings about the spiking of a few of them. Following the
spikes, EPSP’s are generated on efferent neurons after a
one mean transmission delayd. These EPSP’s raise the fir
ing probability and lead to more discharges. The activity is
this way amplified, and partial synchronization of the spi
trains of the neurons occurs, even though the transmis
delays do not all have the same values. The progressive
crease of the activity leads to a decrease of the average
fractory state of the neurons. This, in turn, prevents a furt
increase of the activity, which eventually decreases and
out. At the end of a burst, a large fraction of the neuro
have discharged at least once. These neurons progress
regain their excitability as their potential rises, and a n
burst can be ignited by noise. Thus the burst is the resul
two antagonistic phenomena occurring simultaneously:
amplification of an initial noise-induced firing thanks to th
excitatory connections, and the increasing refractorines
the neurons asS rises.

The interval between two successive bursts is mainly
lated to the duration of the relative refractory period. T
duration of a burst depends on the coupling strengthJ and on
the mean transmission delayd, which both determine the
speed of the spiking amplification. The duration of a burs
also related to the duration of an EPSP. Long lasting EPS
lead to long bursts@see Fig. 3~b!#. Actually, bursts can be
obtained over wide ranges of the network model paramet
We also want to stress that this rhythmic activity is not d
to an intrinsic tendency of the network to oscillate. If noise
suppressed during the simulation, oscillations disappear.
deed, when the coupling is not strong enough, the networ
not able to maintain a sustained firing through reexcitat
loops between the neurons without noise. The network
only transiently amplify the neurons’ firing: during a burs
after a temporary increase, the firing is brought down by
refractoriness of the neurons. If noise is present, when n
rons regain their excitability, a new burst can be induced
noise is not present, the firing will die out. Moreover, wit
out noise, whatever the initial condition is, the spiking ra
idly dies out after a few iterations and no oscillations a
obtained.

When the coupling is strong (J516, Fig. 2!, once ignited
by noise, the activity rapidly grows up and remains at a h
level. A large fraction of the neurons discharge with a hi
frequency. In this case, even if the noise is suppressed du
the simulation, the activity is maintained at a high level.

Thus there are three different types of regimes accord
to the network coupling strength: low constant activity lev
for weak values ofJ, high constant activity level for strong
values ofJ, and oscillations for intermediate coupling. Whe
the coupling strength is in high intermediate valuesJ
514.3, for instance!, depending on the initial condition,
network can either present oscillations or a high const
activity level. For such values of the coupling the high co
stant activity level state is very stable once settled. Me
while, obtaining this steady state requires that a large fr
tion of the neurons fire simultaneously at a given time. W
high intermediate values ofJ such a synchronization may b
achieved only very rarely due to noise, so that oscillation c
last for a very long time. When the couplingJ is in-
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FIG. 2. Time course of the activity levelS(t) ~dimensionless! ~left! and corresponding normalized autocorrelation functions~dimension-
less! ~right! in simulated networks withs251, and for different values of the couplingJ. S(t) is the total number of discharges occurrin
betweent21 ms andt normalized by the numberN of neurons. Network simulations@Eqs.~2.1!–~2.4!# were performed with a time step
Dt50.2 ms andN51000 units. Autocorrelation functions were computed using 20 000 values.
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creased, synchronization is facilitated, and noise brings
system more easily and quickly to the high constant activ
level state.

C. Effect of the noise amplitude

We now examine the effect of the noise amplitude on
generation of oscillations. Figure 4 presents the coherencH
of S as a function ofs2 for three different values of the
coupling.H is defined as the highest peak value obtained
the power spectrum ofS(t). This value is normalized by the
sum of the spectrum components^S2&. With a strong cou-
pling (J516), noise has little effect on the coherence. W
intermediate values ofJ (J57 or 12!, H is maximized as
s2 goes through an optimal value.

Figure 5 presents the dynamics ofS for four different
noise amplitudes withJ512. With a very low noise ampli-
tude (s250.3), bursts are not present. Whens2 is varied
from 0.3 to 0.4, bursts abruptly appear. Withs250.4, the
interval between two successive bursts is quite variable.

FIG. 3. ~a! Activity level S(t) ~dimensionless! of a simulated
network@Eqs.~2.1!–~2.4!# and mean refractory state^U(t)/50& ~di-
mensionless! of this network as a function of timet, with J
512, s251, N51000, and a time stepDt50.2 ms. ~b! Time
course of the activity levelS(t) of simulated networks, for differen
coupling constantsJ, in the case of long lasting EPSP’s:t r

56 ms andt f55 ms ~see Fig. 1!.
e
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e
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the noise amplitude becomes larger, the interburst inte
becomes shorter and less variable. With medium noise
plitudes (s251.6), as soon as a burst is finished a new o
starts, and the activity level dynamics is very regular. W
large noise amplitudes (s253.5) the amplitude of the oscil
lations is small, and the activity dynamics is less regular

The nonmonotonic dependence of the oscillations’ coh
ence on the noise amplitude, can be interpreted in the
lowing way. The whole network is an excitable system,
the sense that it has two different ways of responding t
stimulation consisting of the spiking of a few neurons@20#. If
the stimulation is too weak, the firing is not amplified. If th
stimulation is large enough, it leads to a burst. Noise of v
small amplitude cannot trigger such a transient amplificat
of the activity level. Whens2 is larger bursts become pos
sible, thanks to the noise which acts at two levels. First
the beginning of a burst, the initial noise induced firing
larger than a threshold level~enough neurons spiking within
a short time interval!, which leads to the rapid amplificatio
of the firing. Second, noise decreases this threshold leve
increasing the firing probability of a neuron receiving a su
threshold input.

With low noise amplitudes, bursts are ignited by t
noise-induced firing of neurons receiving no inputs. Con
quently, the interburst interval is related to the intersp
interval of an isolated neuron driven by noise, which b
comes shorter and less variable ass2 increases. Thus, whe
s2 increases, the interburst interval becomes shorter
more regular. Conversely, noise of low amplitude does
significantly alter the time course ofS during a burst. There-
fore, whens2 is varied from 0.4 to 1.6, the activity coher
ence is raised.

With large noise amplitudes, the firing probability of
refractory neuron receiving a subthreshold input is no
negligible. Consequently, the spiking of a neuron during
burst becomes less related to its inputs. Hence, with la

FIG. 4. CoherenceH ~dimensionless! of the activity level of
simulated networks as a function of the noise amplitudes2, for
different coupling constants:n, J516; L, J57; h, J512.
Each point is the average coherence obtained over ten netw
Vertical lines indicate the lowest and highest values ofH obtained
with the ten networks.H is defined as the highest peak value in t
power spectrum, computed with the activity levelS(t), normalized
by the sum of the spectrum components. Power spectra were c
puted using 16 384 values ofS sampled at 0.2 ms.



PRE 58 3615NOISE-INDUCED COHERENT OSCILLATIONS IN . . .
FIG. 5. Time course of the activity levelS(t) ~dimensionless! ~left! and corresponding normalized autocorrelation functions~dimension-
less! ~right! in simulated networks withJ512, and for different values of the noise amplitudes2. Network simulations@Eqs.~2.1!–~2.4!#
were performed with a time stepDt50.2 ms andN51000 units. Autocorrelation functions were computed using 20 000 values ofS.
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noise amplitudes, the activity levelS(t) becomes less corre
lated to S(t2d), and the coherence decreases. Theref
noise of small amplitude raises the coherence by shorte
the interburst interval, and noise of large amplitude lower
by spoiling the dynamics during the bursts.
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Moreover, with large values ofs2, bursts tend to disap
pear. This is shown in Fig. 6, where the average amplitu
and the period of the oscillations are presented as a func
of s2. Oscillations appear brutally, with a sharp rise of th
amplitude, ass2 increases. Once the bursts have appea
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the period of the oscillations monotonously decreases w
s2. The amplitude stays large untils2 is close to 1.5, and
then it decreases. In Sec. III by considering a simpler mo
we derive a map whose dynamics have the same depend
on the noise amplitude. Such a map allows us to determ
quantitatively which values of the noise amplitude and of
coupling strength lead to noise-induced oscillations.

III. REDUCTION TO A MAP

We now consider a simpler network model having all t
essential properties of the previous model. That is, the
work is made ofN pulse-coupled excitatory excitable uni
having a relative refractory period. To simplify the model w
consider that all the connections have the same transmis
delay, greater than the duration of the absolute refrac
period. We also set a finite durationn of the relative refrac-
tory period. The neurons update their potential in discr
time:

Vi
t5U~ t2Ti !1

J

K(
j 51

N

ci j aj
t211Bi

t , ~3.1!

U~ t !5Umexp~2t/tm! if t,n, ~3.2!

U~ t !50 otherwise,

Ti5t if Vi
t>u, ~3.3!

whereaj
t takes the value 1 if neuronj ’s fired at iterationt,

and 0 otherwise.Bi
t is the realization of a centered Gaussi

random variable of variances2. All the parameter values ar
the same as for the previous model; we just rescaletm by
dividing it by the sum of the transmission delay valued and
the rise timet r of the EPSP’s which were used for the mod
studied in Sec. II.n is taken to be large (n524), so that
U(n21) is close to zero.

FIG. 6. Characteristics of the oscillations of the activity leveS
in a simulated network (N51000, J512, andDt50.2 ms) as a
function of the noise amplitudes2. The period (n) of the oscilla-
tions is defined as the inverse of the dominant frequencyn obtained
with the power spectrum ofS(t). The average minimal (h) and
maximal (L) values of S during oscillations were obtained b
averaging all the valuesS(t) ~dimensionless! which are local
minima and maxima over a time window of width 1/n c entered in
t.
th

l,
nce
e

e

t-
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e

l

Since we are interested in the dynamics of the activ
level S, and not in the behavior of an individual neuron, w
want to reduce system~3.1! of N equations to a lower-
dimensional system easier to study. To this end, we desc
the network from a macroscopic point of view. We ca
xk(k>1) the fraction of neurons having a refractory sta
U5U(k), wherek is an integer. LetUi

0 be the initial refrac-
tory state of a given neuroni . After n iterations, either neu-
ron i fired at least once and its refractory state isU(k) with
0<k,n, or it did not fire and its refractory state isU(n).
Thus, aftern iterations, whatever the initial condition wa
one can describe the refractory state of the network by
fractions xk (1<k<n21) of neurons withU5U(k) and
by the fractionxn of neurons which have not discharged f
at leastn iterations. The fractionS of spiking neurons is
given by

S5x0512 (
k51

n

xk . ~3.4!

We call Xt5(x1
t , . . . ,xn

t ) the macrostate of a network a
iteration t. Let m t be the network microstate which consis
of the vector (U1

t , . . . ,UN
t ) of the refractory states of all the

N neurons, withUi
t5Um if neuron i is firing at t. By defi-

nition, X is a function ofm. The next macrostate isXt11

5X„g(m t)… whereg is the operator defined by the conne
tion matrix @ci j # and the distribution probability of the nois
Bi . Thus to obtainXt11 we need to know bothm t and g.
Moreover, because of the noiseBi , Xt11 is actually the re-
alization of a random variable. Nevertheless, we can der
for a given microstatem, the expected macrostate over th
noise probability distribution and over all the networks wi
parametersN andK as a function ofX only. To this end, we
define a functionF in the following way:

F~X~m t!!5 lim
N→`

E@X„G~m t!…# ~3.5!

G is the random operator defined by the noise probabi
distribution and by the random matrix@Ci j #, where theCi j
are random variables having all the same probability law,
the law that is used when a network is built~see Sec. II!. E
denotes the expectation with respect to the probability dis
bution of G. Thus, F gives the next expected macrosta
Xt11 as a function ofX(m t), whenN→`.

We now derive the componentsfk (1,k,n) of F:

E@xk„G~m t!…#5EF 1

N (
i 51

N

d„Ui
t112U~k!…G ~3.6!

5Pr$U1
t115U~k!% ~3.7!

5Pr$„U1
t 5U~k21!…ù„U~k!

1~J/K !Y1
t111B1

t11,u…%, ~3.8!

where Pr denotes the probability andd(x) equals 1 ifx50,
and 0 otherwise.Y is the random variable corresponding
the number of elementary inputs received by a neuron. W
N→`, we have
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FIG. 7. Dynamics of the activity levelSt ~dimensionless! obtained with the mapF @Eqs.~3.10!–~3.13!#, with s251.8 and for different
coupling constantsJ. t here is the time in numbers of iteration steps.
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fk„X~m t!…5xk21
t (

y50

1`

Pr$Y1
t115y%

3Pr$B1
t11,u2U~k!2~J/K !y% ~3.9!

and the probability law ofY approaches a Poisson law
parameterKS. Thusfk (1,k,n) is given by

fk„X~m t!…5xk21
t

„12Pk~St!…, ~3.10!

Pk~S!5 (
y50

1`
~KS!y

y!
e2KSr„u2U~k!2~J/K !y…,

~3.11!

wherer is the Gaussian repartition function with mean ze
and variances2. In the same way, we derivef1 andfn :

f1„X~m t!…5St
„12P1~St!…, ~3.12!

fn„X~m t!…5~xn21
t 1xn

t !„12Pn~St!…. ~3.13!

F gives the mean macrostateE@Xt11#, over all the networks
with parameterK, as a function ofX(m t), whenN→`. We
have now to examine how far from this mean value the m
rostates of the individual networks are. Actually, using t
properties of the variance, we can show that

lim
N→`

var@X~G~m t!!#50, ~3.14!
-

where var denotes the variance with respect to the proba
ity distribution of G. Thus, for a given initial microstatem
and a large numberN of neurons, it is expected that th
sequence

Xt115F~Xt! ~3.15!

provides a good approximation of the dynamics of the m
rostateX over at least one iteration. The important point no
is that m t5g t(m0) should also be considered as a rando
variable. If the microscopic variablesUi (1< i<N) are sto-
chastically independent, then one can show that rela
~3.15! indeed gives the time course of the macrostate of la
networks. Such an independence of theUi would be ob-
tained, for instance, in a network where the connections
rerandomized at each iteration. Approximating a syste
with fixed relations between its units, by a system whe
these relations are reshuffled during time can lead to a g
estimation of the system properties@21#. In the present study
the network connections are fixed during time. Neverthele
by considering only the asymptotic independence among
nite subsets of the microscopic variables, Amari@22# dem-
onstrated that such a mapF provides a good approximatio
of the macrostate dynamics of sparsely connected netw
with frozen connections. Moreover, many numerical stud
@23#, carried out with different models of sparsely connect
neural network models, are in agreement with Amari’s
sult. The important result that we want to stress in this pa
is that the behavior of the mapF that we obtained is in
excellent agreement with the networks’ simulations p
sented in Sec. II.
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FIG. 8. Dynamics of the activity levelSt ~dimensionless! obtained with the mapF @Eqs.~3.10!–~3.13!#, with J512 and for different
noise amplitudess2. t is the time in numbers of iteration steps.
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Indeed, the dynamics of the activity levelS computed
with the mapF have the same dependencies on the coup
strengthJ and the noise amplitudes2 as those observed i
network simulations. Figure 7 shows the effect of the co
pling strengthJ, with s251.8, on the time course ofS ob-
tained with Eqs.~3.10!, ~3.11!, ~3.12!, and ~3.13!. With a
weak coupling, after a few iterations the activity level r
mains constant at a low level. AsJ is raised, oscillations
appear and their amplitude increases smoothly withJ. With
strong coupling strengths, the activity rises to a high leve
which it remains constant.

Figure 8 shows the effect of the noise amplitudes2 on the
activity dynamics whenJ512. With a very low noise am-
plitude (s250.63) S is maintained constant at a low leve
When s2 overtakes a threshold value close to 0.7, osci
tions appear brutally with a nonzero amplitude. Then, ass2

is further increased, the frequency of the oscillations m
notonously increases. The amplitude increases whens2 is
varied from 0.7 to 1.1, and progressively decreases w
g

-

t

-

-

th

higher noise levels. Finally, whens2 is greater than 3.95
oscillations disappear. Thus the dynamics of mapF have the
exact same dependencies onJ ands2 as those described fo
simulated networks in Sec. II.

In the parameter ranges for which oscillations were o
served, except for strong values ofJ or for low values ofs2,
varying the initial conditionX0 did not lead to different be-
haviors. That is, only oscillations ofS, and no constant ac
tivity levels, were obtained. Therefore, to determine the
rameter values allowing oscillations, it is interesting to fi
the macrostatesX such thatS will be kept constant over
time. Actually, such macrostates are the locally stable fix
points of the mapF. Indeed, using Eqs.~3.10!, ~3.11!,
~3.12!, and ~3.13!, we find that a macrostateX*
5(x1* , . . . ,xn* ), with activity level S* 512x1* 2•••2xn* ,
is a fixed point ofF if it is solution of the nonlinear system

xk5S)
j 51

k

„12Pj~S!… ~1<k,n!,
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xn5S)
j 51

n

„12Pj~S!…/Pn~S!. ~3.16!

System~3.16! can be reduced to a single equation inS by
adding all the lines and using the relationS512x12•••

2xn . This equation can be solved numerically and, onceS*
is obtained, thexk* (1<k<n) values can be deduced from
Eqs.~3.16!. Thus, Eqs.~3.16! define a one-to-one correspo
dence betweenX* and S* which is the activity level kept
constant over time whenX* is stable. The local stability o
X* can be studied by linearizing system~3.16! near the fixed
point,

F~X* 1D!5X* 1J@F~X* !#D, ~3.17!

whereJ is the Jacobian matrix andD a small perturbation.
X* is locally stable if all the eigenvalues ofJ@F(X* )# have
a modulus less than 1.

For different sets of parameters, the fixed pointsX* were
computed and their local stability was examined. Figure 9~a!
represents the activity levelS* of the fixed pointsX* as a
function of the couplingJ, with s251.8. Thick continuous
lines correspond to the locally stable fixed points, the t
dotted line corresponds to the unstable points, and the t
dashed lines indicate the minimal and maximal values oS
when oscillations occur. WhenJ is varied from 0 to 25, the
branch of the fixed points presents two successive fo
With a weak coupling, there is only one locally stable fix
point, referred to asL , andS is kept constant at a low leve
WhenJ is close to 9.6, a Hopf bifurcation occurs@24#. The
fixed point loses its stability and oscillations appear with
very small amplitude. AsJ increases, this amplitude rise
WhenJ is close to 13.85 a locally stable fixed point appea
through a saddle-node bifurcation, with a high activity lev
We denote this stable fixed point byH. Oscillations are still
possible untilJ515.4. Thus, forJ between 13.85 and 15.4
the system is bistable: depending on the initial conditi
networks display sustained oscillations or stabilize at a h
activity level. At J515.4, oscillations collide with a saddl
point and disappear through a saddle-loop bifurcation.

In Fig. 9~b!, J is kept constant at 12, and the noise a
plitude s2 is varied from 0 to 5. With low noise amplitude
(s2,0.7) there is a locally stable fixed point with a lo
activity level S* increasing withs2. When s2 is close to
0.7, a Hopf bifurcation occurs, and oscillations appear wit
nonzero amplitude. Ifs2 is then decreased, oscillations pe
sist until s250.67, where they disappear with a nonze
amplitude. Thus, fors2 between 0.67 and 0.7, the system
bistable, as both a stable fixed point and stable oscillati
coexist. Whens2 increases beyond 0.7 the amplitude of t
oscillations rises sharply untils251.05, and then progres
sively decreases. Fors253.95 the fixed point regains it
stability through a second Hopf bifurcation. It should
noted that the characteristics of the oscillations vary withs2

in a way similar to what was obtained with simulated n
works ~see Fig. 6!.

Figures 9~a! and 9~b! show that there is a region of th
parameter plane (J,s2) where the system has no stable fix
points. In this region the system stabilizes into an oscillat
activity. To delimit this region of parameter plane, we co
n
ck

s.

,
.

,
h

-

a

s

-

y
-

puted the values ofJ ands2 at which the fixed points lose
their stability. The result is presented in Fig. 10. Continuo
lines partition the parameter plane (J,s2) into different re-
gions according to the stability of the fixed points.L andH
stand for the region where there exists only one locally sta
fixed point with, respectively, low and high activity leve
S* . LH indicates the bistability region where the two stab
fixed points coexist.O is the region where oscillation is th
only asymptotically stable regime. In regionOH, depending
on the initial condition, the system will either oscillate o
maintain a constant high activity level. Thick lines indica
the positions of the two folds presented in Fig. 9~a!. The left
thick line in Fig. 10 corresponds to the higher fold, where t
saddle-node bifurcation takes place, and the right thick l
indicates the lower fold. In Fig. 10, the two thin dotted lin
represent two new folds that appear at a cusp atJ513.6 and
s250.55, below the lower fold of Fig. 9~a!. The lowest of
the two new folds takes place at large values ofJ, for low
values ofs2. Consequently, the branch of the low stab
fixed pointsL also extends to larger values than the posit

FIG. 9. Activity levelsS* at the fixed points of the mapF @Eqs.
~3.10!–~3.13!# as a function of the couplingJ, whens251.8 ~a!,
and as a function of the noise amplitudes2, whenJ512 ~b!. S, J,
and s2 are dimensionless. Thick solid lines correspond to the
cally stable fixed points.H stands for locally stable fixed point
with a high activity level, andL for locally stable fixed points with
a low activity level. Thin dotted lines correspond to unstable fix
points, and thick dashed lines indicate the minimal and maxim
values of the activity levelS when oscillations are present.
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of the lowest fold in Fig. 9~a!, whens2 is small.
From Fig. 10, we can draw three conclusions regard

the generation of noise-induced oscillations.
~1! There exists a wide region of the parameter pla

(J,s2) where noise-induced oscillations can occur. Osci
tions are not present in the absence of noise~see Fig. 10
whens250). This is consistent with what was observed
the network simulations presented in Sec. II. When star
from an oscillating activity~regionsO or OH!, if the noise is
suppressed, the activity dies out; that is, the system se
into the fixed pointL , corresponding toS* 50 when s2

50.
~2! Many different scenarii can lead to oscillations. If th

system starts from regionL , with 0.3,s2,5, increasing the
coupling J will lead to oscillations through the Hopf bifur
cation presented in Fig. 9~a!. If s2 is less than 3.4, a furthe
increase ofJ will lead to the disappearance of these oscil
tions, as in Fig. 9~a!, when they collide with a saddle poin
kicking the system toward the fixed pointH. If s2 is greater
than 3.4, before stabilizing inH, the system will first pass
through a stable fixed point of typeL , localized near the
lower fold of Fig. 9~a!. When starting from regionL , with
s250 and 9.81,J,15.2, increasing only the noise amp
tude will make oscillations appear and disappear through
two successive Hopf bifurcations presented in Fig. 9~b!.

~3! For such oscillations, induced by varyings2, the situ-
ation is quite different when the system does not start fr
regionL but rather from the bistable regionLH . In this case,
to obtain oscillations, the initial condition has to be the low
fixed pointL . WhenJ is greater than 15.2, increasings2 will
lead first to oscillations and then to stabilization into t
higher fixed point. Once the network is locked in this high
fixed point, neurons discharge with a high frequency a

FIG. 10. Stability regions of the different regimes obtained w
the mapF in the parameter plane (J,s2) for a sparsely connecte
network (K515). BothJ and (J,s2) are dimensionless. Solid line
partition the plane according to the local stability of the fix
points. In regionsL and H there is only one locally stable fixe
point, with, respectively, a high and low activity level@see Fig.
9~a!#. In region LH both stable fixed points coexist. In regionO
only oscillations are asymptotically stable. InOH the system either
oscillates or settles into a stable fixed point with high activity lev
The dashed line is the boundary betweenOH andH. The thick left
line corresponds the higher fold of Fig. 9~a!, and the right thick line
to the lower fold of Fig. 9~a!.
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receive permanently strong inputs. Except whenJ is close to
the left thick line of Fig. 10, varying the noise amplitud
only does not allow the system to escape from the fixed p
H, and the coupling has to be lowered. Switching back a
forth from oscillating to nonoscillating regimes is different
regions of monostability than in regions of bistability. I
regionsL and O, such switching can be obtained only b
varying the system parameters. In regionOH, changes of the
regime can also be obtained by a simple perturbation of
system.

To complete our study of the parameter values allow
oscillations to occur, we have also examined the effect of
network connectivity, i.e., the effect of parameterK. This
study is presented in Sec. IV, where we consider the cas
a fully connected network.

IV. FULLY CONNECTED NETWORK

We now consider the same network model~3.1! as in Sec.
III, with the same parameter values, except for the conn
tivity parameterK that we set equal toN21. Thus each
neuron emits a connection to all the other neurons and
ceives connections from all the other units. With such a fu
connected network, there exists a unique connection ma
@ci j #. Consequently, the derivation of the mapF, which
gives the dynamics of the macrostateX, is considerably sim-
plified compared to the case of the sparsely connected
work. The dynamics ofX is described by the same set
equations~3.10!, ~3.12! and ~3.13!, but this time with

Pk~S!5r„u2U~k!2JS…. ~4.1!

Simulations of this new mapF showed that oscillations
were still possible in a fully connected network. We al
checked that such oscillations are obtained in simulation
the network model presented in Sec. II, whenK5N21. We
did the same study of the fixed point stability of the mapF
as in Sec. III. The results for the fully connected netwo
model are presented in Fig. 11, with the same legends a
Fig. 10. RegionsL and H, where there is only one stabl
fixed point, are still present, as well as the regionsLH and
OH of bistability. The main difference with the sparsely co

.

FIG. 11. Stability regions of the different regimes obtained w
the mapF in the parameter plane (J,s2) for a fully connected
network (K5N21). Same legends as in Fig. 10.
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nected network is that there is no longer a regionO where
only oscillations are asymptotically stable. Thus, with th
fully connected network, oscillations occur only in regions
bistability. This implies that the generation of noise-induc
oscillations depends on the initial condition, and that the
cillation regime is sensitive to perturbations of the activity
the network units. We examined how this result was se
tive to variations of the model parameters. We found t
varying the membrane time constanttm , the after-spike hy-
perpolarizationUm or the firing thresholdu could lead to the
appearance of a regionO for a fully connected network. The
effects of these parameters on the generation of oscillat
will be detailed in a further publication. The main result th
we want to stress in this paper is that, for a given set
parameters, the regionO, in which oscillations only are as
ymptotically stable, is always much wider in a sparsely co
nected than in a fully connected network. This effect of t
connectivityK can be sketched using Fig. 9~a! as follows:
for a given value of the noise amplitudes2, when K is
increased, the higher fold is moved toward lower coupl
constantsJ, whereas the lower fold and the region where t
fixed pointL loses its stability, and where oscillations occu
is moved toward higher values ofJ. So, finally, when the
network is fully connected (K5N21), region O has be-
come smaller. In other words, the stronger the connecti
is, the more the network is likely to settle into the satura
firing stateH.

V. CONCLUSION

We have shown that noise alone can induce synchron
tion and oscillations in an excitatory network of coupled e
citable neuron models. Similar oscillations were first
ported by Macgregor and Palasek in simulations of neu
pools@25#. In the present study we have explained how su
oscillations are produced. The whole network is an excita
system which responds to an initial noise-induced firing
neurons with a transient amplification of the activity, that w
O

xp
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called a burst, followed by a refractory period during whi
the network is less sensitive to a new stimulation. We ha
shown that in such an excitable system, the regularity of
oscillations is a nonmonotonic function of the noise amp
tudes2. This relies on the differential dependencies ons2 of
the interburst interval and the burst duration. Such a mec
nism is qualitatively similar to what was proposed by P
ovsky and Kurths for so called ‘‘coherent resonance’’ with
single FitzHugh neuron model@12#. Meanwhile, the system
we studied here is not a single neuron. Noise is impo
upon a large number of neurons, and a burst is ignited w
a fraction of them fires within a short time window. Th
regularity of the oscillations is therefore not related to t
threshold crossing of a single neuron, but to the aver
noise-induced spiking over a large population. Thus, p
vided the number of neurons is large, oscillations can
quite regular. To study the dependence of these oscillat
on the noise amplitude, we have derived a discrete m
which gives the dynamics of large networks. A similar m
had been previously studied by Bauer and Pawelzic@26# for
the particular case of a fully connected network with tran
mission delays very short compared to the duration of
neuron refractory period. The map we derived in the pres
study is more general, and can also account for the dynam
of sparsely connected networks. Moreover, we have not o
numerically studied the map dynamics, but have also de
mined and analyzed its bifurcation structure. This led to
conclusion that noise induced oscillations can occur o
wide ranges of the network parameters, and that there e
two different situations for the generation of oscillations. E
ther oscillating is the only asymptotically stable regime, o
occurs in a parameter region of bistability where the syst
can also settle into a state of high frequency firing of t
neurons. We have shown that sparsely connected netw
are more likely than fully connected networks to display o
cillations robust to perturbations.

The authors thank D. R. Chialvo, O. Arino, P. Y. Boell
and H. Fukai for very helpful comments on this work.
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