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We study the dynamics of randomly connected excitatory networks of excitable spike-response neuron
models. Large networks can exhibit a nonmonotonic collective response to a stimulation when the coupling
strength between neurons lies within an appropriate range. With such a coupling, noise imposed upon neurons
induces synchronization of the units and oscillations of the network activity, consisting of a succession of
bursts. Furthermore, the regularity of this rhythmic activity goes through a maximum as the noise amplitude is
increased. This honmonotonic dependence on the noise amplitude relies on the fact that noise acts in two
antagonistic ways. Noise of low amplitude shortens the interval between two successive bursts, leading to an
increase of the dynamics regularity, whereas noise of strong amplitude deteriorates the regularity of the
dynamics during a burst. In order to study the influence of the noise amplitude and the coupling on the
generation of collective oscillations quantitatively, we consider a simpler network model of excitable units. We
derive a discrete map, including the noise amplitude and the coupling strength as parameters, which describes
the network dynamics in the limit of a large number of neurons. This map reproduces all characteristic features
of the activity dynamics obtained with simulated networks. From the analysis of the bifurcation structure of
this map, we obtain parameter regions where noise-induced oscillations occur. Using this map we also study
the effect of the network connectivity on the generation of oscillations. We show that such noise-induced
coherent oscillations in fully connected networks are related to special initial conditions, and are sensitive to
perturbations, whereas they can be the only asymptotically stable regime in sparsely connected networks.
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[. INTRODUCTION considered a system with two simultaneous saddle-node bi-

furcations. They observed that, close to such a bifurcation,

The presence of noise can influence information processioise accelerates the slow parts of the trajectories, so that the
ing by nerve cells(for a review, see Ref[1]) in several oscillation frequency increases with the noise amplitude.
ways. For instance, noise can linearize a neuron’s inputThis work followed the numerical investigations of the same

output transfer function in response to suprathreshold sinesystem by Gang@t al. [11], who moreover reported that the

like periodic inputg2]. Noise can also smooth the neuron’s coherence of these oscillations was maximized at an inter-
response to steplike inpuf8]. The mechanisms of these mediate noise amplitude. Therefore, this work showed the

effects have been analyzed theoreticdly. existence of SR in an autonomous system, i.e., in a system
Noise of an appropriate level may also help neurons tavithout external forcing.
detect subthreshold periodif] or aperiodic signal§6]. Ex- As pointed out by Rappel and Strogatz, a key feature in

tensive theoretical studies of this noise effect have been cathese results was the differential response of slow and fast
ried out[7]. These have shown that stochastic resonancdynamics to external fluctuations. The importance of this
(SR may be one possible mechanism by which noise modifactor in noise-induced coherence was further confirmed by
fies signal processing in neurons. SR means that an optim&ikovsky and Kurthd12]. These authors analyzed the re-
level of noise maximizes the regularity of the neuron spikesponse of the FitzHugh neuron model in the excitable regime
train, or maximizes the fidelity of its response to a subthreshunder the sole influence of white Gaussian noise. They re-
old input. For instance, one manifestation of SR occurs wheported that various measures of the regularity of this sys-
there is matching between the time scale of the noisetem’s dynamics were maximized at an intermediate noise
induced firings and the input signal period or the period ofamplitude. Pikovsky and Kurths showed that, in response to
some autonomous subthreshold oscillati)8s Thus one noise of low amplitude, the discharges were highly irregular,
striking effect of SR is that, for an appropriate range of noisedue mainly to the large variability in the first passage time
amplitude, the neuron generates a close to periodic spikieetween the resting state and the firing threshold. Increasing
train. Such a behavior is related to the periodic nature of théhe noise level regularized the discharges, because it reduced
input. this variability without much affecting the time required for
Meanwhile, noise-induced coherent dynamics have alsthe system to come back to its resting state once an action
been reported in the absence of periodic modulation. Sigefiotential was generated. Higher noise levels, however, dis-
and Horsthemkd9] showed that an excitable ring device, torted this recovery process, and led to an increased variabil-
when placed close to a saddle-node bifurcation, displays osty. In the present study, we show that a similar mechanism
cillations with a dominant frequency. Another numerical can lead to noise-induced coherent activity in networks of
work was later carried out by Rappel and Strodd@], who  neuron models. Regular activities in the presence of noise
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have already been reported in periodically driven networksill be referred to as the connectivity parameter. It corre-

of coupled oscillators or excitable unit$3]. sponds to the mean number of connections emitted or re-
Noise alone, without periodic input, can also induce syn-ceived by a neuron. Each neuron(1<i=<N) is described

chronized oscillations. This phenomenon was analyzed ity its membrane potentidl;. For the sake of convenience

networks of globally coupled active rotatof$4]. Isolated V; is represented in dimensionless units, and the resting

active rotators switch from excitable to oscillating regimesvalue of the potential is set to zero. The neuron sums its

through a saddle-node bifurcation, and their response timputs over time, since its last discharge tifie OnceV,

noise is, thus, similar to what has been reportef®ii1,1J.  overtakes a threshold value the neuron fires, sends outputs

When each excitable unit is close to the saddle-node bifurto other units, and immediately resets its potential. The neu-

cation, coherent oscillations appear at intermediate noise levon model is similar to the spike-response neuron model

els. Recently, Kurrer and Schulten proposed a new approx[-17—19 with absolute and relative refractory periods. At

mation to reexamine this phenomenon, and found similatime t, V;(t) is given by

transitions between coherent and incoherent states at inter-

mgdiate nqise levelf15]. Couple_d active rotators interact Vi()=—o if 0<t—T;<t, 2.1

“diffusely” in the sense that the influence of one unit upon

another is a smooth function of their phase difference. Yet, N

even when network units interact by pulses, noise alone can J

lead to synchronous regular discharges in coupled excitable Vil =U(t=T))+ K]Zl Cij T_li(u)d“

systems. Rappel and Karma6] observed this phenomenon '

in numerical simulations of globally pulse-coupled integrate-otherwise,

and-fire neurons. They showed that the periodicity of the

overall network activity is a humped shaped function of the

noise amplitude. They also indicated that this phenomenon is L= 2  su—di—tho(t—u), (2.2
more pronounced when the numhérof network units is tjf>Tifdij
large.

We present a form of noise-induced partial synchroniza-
tion and coherent collective oscillations in excitatory net-

works of spike-response neural modflg—19. In a previ-  \yheret, is the duration of the absolute refractory peridd,
ous study, we have shown that, with this type of model, theg the coupling constant, are the firing times of neuron
whole network can behave like an excitable sysf@@i. In i, U, is the after-spike hyperpolarization, atidis the po-

this paper, we analyze the influence of noise on the dynamicgnia| recovery time constant which determines the duration
of such networks. We show that noise can induce collective iha relative refractory periodJ (t—T,) will be referred to

oscillations, provided the coupling strength of the networkas the refractory state of neurorat timet. When neurorj

units lies within an appropriate range. In this range of COUtires, neurori receives, after a time delay; , an excitatory
pling, there exists an optimal value of the noise amplltudqnput given by !

maximizing the coherence of the oscillations. We also con-
sider a simpler network model whose dynamics can be de-
scribed by a discrete map. From the bifurcation diagram of
this map, we determine the ranges of the coupling and the
noise amplitude where coherent oscillations are possible. v(t)=(t/t,)exp(— (t—t,)/t,) if O0<t<t,,
Theoretical results are in agreement with simulations. Fi-
nally, we show that the conditions under which oscillations
can be obtained depend on the connectivity of the network,
and are quite different with fully or sparsely connected net-

workg. ) ) The shapes of two different types of such excitatory-post-
This paper is organized as follows. The network modelsynaptic potentialéEPSP’$ are presented in Fig. 1. Noise is
and simulation results are described in Sec. Il. In Sec. ”I, WQntroduced by g|v|ng to a neuron with potentw at timet

introduce a simplified network model and derive a discretene following probability of firing betweet andt+ t:
map that gives its dynamics. Then we analyze the bifurcation

structure of this map. In Sec. IV, we examine the effect of

U(t)=Uexp —t/t,), (2.3

v()=0 if t<O,

v(t)=((t+t—t)/t)exp(— (t—t,)/t;) if t>t,.
(2.4)

connectivity. The paper is concluded in Sec. V. p=dtp(6=Vi(1)), (2.9
where p is a sigmoidal function whose maximal slope de-
Il. COHERENT OSCILLATIONS creases with the noise amplitude. Such a definition of
stochastic firing gives realistic spiking statistics to the neuron

A. Network model model[17].

The network model used through this study consists of a Through this study, we use the following set of param-
randomly connected population df excitable units. When eters: §=2.1, t =1 ms, K=15, U,=-8, t,=25 ms,
building the network, connections are randomly chosen: neuandt,=1 ms, t;=2 ms. The membrane potential is ex-
ron j connects to neurom (i#j) with probability K/(N pressed in the number of EPSP amplitudes. Thus a firing
—1), so that each connectiar is the realization of a Ber- threshold of 2.1 means that a neuron with potential close to
noulli random variable of paramet/(N—1) andc;;=0.K the resting value must receive more than two EPSP’s within
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17 brings about the spiking of a few of them. Following these
spikes, EPSP’s are generated on efferent neurons after about
one mean transmission deldy These EPSP’s raise the fir-
vit) ing probability and lead to more discharges. The activity is in
this way amplified, and partial synchronization of the spike
trains of the neurons occurs, even though the transmission
0.5 delays do not all have the same values. The progressive in-
crease of the activity leads to a decrease of the average re-
fractory state of the neurons. This, in turn, prevents a further
increase of the activity, which eventually decreases and dies
out. At the end of a burst, a large fraction of the neurons
have discharged at least once. These neurons progressively
regain their excitability as their potential rises, and a new
5 20 o5 30 burst can be ignited by noise. Thus the burst is the result of
t(ms) two antagonistic phenomena occurring simultaneously: the
FIG. 1. Excitatory-post-synaptic potentigEPSP v(t) [Eq. amplification of an_initial noise-in_duced firing thanks_to the
(2.4)] as a function of time after the firing of a presynaptic neuron. €XCitatory connections, and the increasing refractoriness of
Two different types of EPSP’s are presented: short lasting ( the neurons a$ rises.

0 5 10

=1 ms andt;=2 ms) and long lasting t{=6 ms and t; The interval between two successive bursts is mainly re-
=5 ms). The potential is normalized by the amplitude of thelated to the duration of the relative refractory period. The
EPSP, so that(t) is dimensionless and is between 0 and 1. duration of a burst depends on the coupling stredgihd on

the mean transmission delal; which both determine the
a short time interval to discharge. The delaysare distrib-  speed of the spiking amplification. The duration of a burst is
uted according to a truncated Gaussian law, ¢4ef 0], of  also related to the duration of an EPSP. Long lasting EPSP’s
meand=5 ms and variance 1 rfisp is the Gaussian rep- |ead to long burst§see Fig. 8)]. Actually, bursts can be
artition function with mean zero and varianeé. Network  obtained over wide ranges of the network model parameters.
simulations were run with a time stept=0.2 ms and with e also want to stress that this rhythmic activity is not due
N=1000 neurons. Controls run with smaller time steps anqq an intrinsic tendency of the network to oscillate. If noise is
larger network sizes led to the same results. In order to folsnpressed during the simulation, oscillations disappear. In-
low how spiking evolves during time within the network, we geeq when the coupling is not strong enough, the network is
define the activity leve§(t) as the total number of spikes in ot apje to maintain a sustained firing through reexcitatory
the netwprk, normalized by the numblir of units, during loops between the neurons without noise. The network can
the time intervalt—t,,;t] wheret, =1 ms. only transiently amplify the neurons’ firing: during a burst,

after a temporary increase, the firing is brought down by the

B. Effect of the coupling strength refractoriness of the neurons. If noise is present, when neu-

First we examine the effect of the coupling strength on th¢0ns regain their excitability, a new burst can be induced. If
network behavior. Figure 2 presents the dynamic$ @ind noise is not present, the firing will die out. Moreover, with-
the corresponding normalized autocorrelation functions foout noise, whatever the initial condition is, the spiking rap-
four values of the coupling constait with o>=1. The nor-  idly dies out after a few iterations and no oscillations are
malized autocorrelation at a time lagms is defined by obtained.

o When the coupling is strongl& 16, Fig. 2, once ignited
(S(H)S(t+1))

by noise, the activity rapidly grows up and remains at a high
(5%

c(l)= , S=S-(S). (2.6)

level. A large fraction of the neurons discharge with a high
frequency. In this case, even if the noise is suppressed during

With a weak COUp”ng\!: 1), the aCtiVity levelS is low the simulation, the aCt|V|ty is maintained at ahlgh level. .
and shows only small random fluctuations around its mean, 'nus there are three different types of regimes according
as indicated by the autocorrelatio&(t) is close to the su- t© the network coupllng strength: low g()_nstant activity level
perposition of the independent firing processes of isolateor weak values ofl, high constant activity level for strong
neurons driven by noise. As the Coup”ng increases’ spikingames OfJ, and oscillations for intermediate Coupling. When
of the neurons become less independent, and quite regultite coupling strength is in high intermediate valuek (
oscillations of the activity level appead€6). The ampli- =14.3, for instancg depending on the initial condition, a
tude of these oscillations increases smoothly with the counetwork can either present oscillations or a high constant
pling strength, and the time course®fends to a succession activity level. For such values of the coupling the high con-
of bursts of activity §=12). These oscillations @ indicate  stant activity level state is very stable once settled. Mean-
a partial synchronization: a non-negligible fraction of thewhile, obtaining this steady state requires that a large frac-
neurons tend to fire simultaneously, or at least within a shortion of the neurons fire simultaneously at a given time. With
time window. high intermediate values df such a synchronization may be

At the beginning of a burst, for most of the neurons, theachieved only very rarely due to noise, so that oscillation can
refractory statdJ is close to zerdsee Fig. 83)], and noise last for a very long time. When the coupling is in-
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FIG. 2. Time course of the activity lev&(t) (dimensionless(left) and corresponding normalized autocorrelation functiglirmension-
less (right) in simulated networks witls?=1, and for different values of the couplirg S(t) is the total number of discharges occurring
betweent—1 ms andt normalized by the numbeX of neurons. Network simulatiorf€gs. (2.1)—(2.4)] were performed with a time step
At=0.2 ms andN=1000 units. Autocorrelation functions were computed using 20 000 values.
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(b) FIG. 4. Coherenced (dimensionlessof the activity level of
WMWWWWWMWWMWWWMWN simulated networks as a function of the noise amplitude for
different coupling constants®A, J=16; ¢, J=7; O, J=12.
=12 Each point is the average coherence obtained over ten networks.

Vertical lines indicate the lowest and highest value$lobbtained

with the ten networksH is defined as the highest peak value in the
power spectrum, computed with the activity le@t), normalized

by the sum of the spectrum components. Power spectra were com-
J=6 puted using 16 384 values &sampled at 0.2 ms.

the noise amplitude becomes larger, the interburst interval
0.3 becomes shorter and less variable. With medium noise am-
plitudes (@2=1.6), as soon as a burst is finished a new one
starts, and the activity level dynamics is very regular. With

S J=1 large noise amplitudess€=3.5) the amplitude of the oscil-
0 s lations is small, and the activity dynamics is less regular.
1000 1200 1400, 1600 1800 2000 The nonmonotonic dependence of the oscillations’ coher-

t(ms . . . .
(me) ence on the noise amplitude, can be interpreted in the fol-

FIG. 3. (a) Activity level S(t) (dimensionlessof a simulated lowing way. The whole network is an excitable system, in
network[Egs.(2.1)—(2.4)] and mean refractory staé) (t)/50) (di- the sense that it has two different ways of responding to a
mensionless of this network as a function of timeé, with J stimulation consisting of the spiking of a few neur¢@6]. If
=12, 0?=1, N=1000, and a time stept=0.2 ms. (b) Time  the stimulation is too weak, the firing is not amplified. If the
course of the activity leved(t) of simulated networks, for different stimulation is large enough, it leads to a burst. Noise of very
coupling constants], in the case of long lasting EPSP’'s;  small amplitude cannot trigger such a transient amplification
=6 ms and;=5 ms(see Fig. 1 of the activity level. Whens? is larger bursts become pos-

sible, thanks to the noise which acts at two levels. First, at

creased, synchronization is facilitated, and noise brings thé® beginning of a burst, the initial noise induced firing is

system more easily and quickly to the high constant activity@rger than a threshold levéénough neurons spiking within
level state. a short time interva) which leads to the rapid amplification

of the firing. Second, noise decreases this threshold level by
C. Effect of the noise amplitude increasing the firing probability of a neuron receiving a sub-
threshold input.

We now examine the effect of the noise amplitude on the \ith low noise amplitudes, bursts are ignited by the
generation of oscillations. Figure 4 presents the coherkince noise-induced firing of neurons receiving no inputs. Conse-
of S as a function ofa” for three different values of the quently, the interburst interval is related to the interspike
coupling.H is defined as the highest peak value obtained irinterval of an isolated neuron driven by noise, which be-
the power spectrum d¥(t). This value is normalized by the comes shorter and less variabledsincreases. Thus, when
sum of the spectrum componen(tS®). With a strong cou- &2 increases, the interburst interval becomes shorter and
pling (J=16), noise has little effect on the coherence. Withmore regular. Conversely, noise of low amplitude does not
intermediate values ol (J=7 or 12, H is maximized as significantly alter the time course & during a burst. There-

o goes through an optimal value. fore, wheno? is varied from 0.4 to 1.6, the activity coher-
Figure 5 presents the dynamics 8ffor four different ence is raised.
noise amplitudes witld=12. With a very low noise ampli- With large noise amplitudes, the firing probability of a

tude (#2=0.3), bursts are not present. Whe# is varied refractory neuron receiving a subthreshold input is non-
from 0.3 to 0.4, bursts abruptly appear. Wiitt=0.4, the  negligible. Consequently, the spiking of a neuron during a
interval between two successive bursts is quite variable. Aburst becomes less related to its inputs. Hence, with large
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FIG. 5. Time course of the activity lev&(t) (dimensionless(left) and corresponding normalized autocorrelation functigimension-
less (right) in simulated networks witd=12, and for different values of the noise amplituse Network simulation§Egs.(2.1)—(2.4)]
were performed with a time stept=0.2 ms and\N= 1000 units. Autocorrelation functions were computed using 20 000 valu8s of

noise amplitudes, the activity lev8(t) becomes less corre- Moreover, with large values af?, bursts tend to disap-
lated to S(t—d), and the coherence decreases. Thereforepear. This is shown in Fig. 6, where the average amplitude
noise of small amplitude raises the coherence by shorteningnd the period of the oscillations are presented as a function
the interburst interval, and noise of large amplitude lowers ibf o2. Oscillations appear brutally, with a sharp rise of their
by spoiling the dynamics during the bursts. amplitude, ass? increases. Once the bursts have appeared,
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0.1 250 Since we are interested in the dynamics of the activity
level S, and not in the behavior of an individual neuron, we
0.08} 1200 want to reduce systenf3.1) of N equations to a lower-

dimensional system easier to study. To this end, we describe
the network from a macroscopic point of view. We call

0.06¢ 1190 X(k=1) the fraction of neurons having a refractory state
S lr/n\g) U=U(k), wherek is an integer. Let)? be the initial refrac-
0.04r 110 tory state of a given neuran After n iterations, either neu-
roni fired at least once and its refractory stateJigk) with
0.02} 150 O=<k<n, or it did not fire and its refractory state i$(n).

Thus, aftern iterations, whatever the initial condition was,
one can describe the refractory state of the network by the
fractions x, (1=<k=n-—1) of neurons withU=U(k) and

by the fractionx, of neurons which have not discharged for

FIG. 6. Characteristics of the oscillations of the activity legel @t l€astn iterations. The fractiorS of spiking neurons is
in a simulated networkN=1000, J=12, andAt=0.2 ms) as a 9Ivén by
function of the noise amplitude?. The period (\) of the oscilla-
tions is defined as the inverse of the dominant frequenoiptained
with the power spectrum dB(t). The average minimal{) and S=Xo= 1_21 Xk 3.4
maximal (&) values of S during oscillations were obtained by

n

averaging all the valuesi(t) (dimensionless which are local We callX'=(x!, ... x!) the macrostate of a network at

minima and maxima over a time window of widthwl/c entered in . . t . . .

‘ iterationt. Let ' be the network microstate which consists
of the vector U}, ... ,U}) of the refractory states of all the

the period of the oscillations monotonously decreases witt neurons, withU;= Uy, if neuroni is firing att. By defi-
o2. The amplitude stays large un? is close to 1.5, and hition, X is a function of . The next macrostate X'**
then it decreases. In Sec. Il by considering a simpler model=X(y(«")) where y is the operator defined by the connec-
we derive a map whose dynamics have the same dependerié@n matrix[c;;] and the distribution probability of the noise
on the noise amplitude. Such a map allows us to determinBi. Thus to obtainX'** we need to know both' and y.
quantitatively which values of the noise amplitude and of theMoreover, because of the noigg, X'** is actually the re-

coupling strength lead to noise-induced oscillations. alization of a random variable. Nevertheless, we can derive,
for a given microstate., the expected macrostate over the
lIl. REDUCTION TO A MAP noise probability distribution and over all the networks with

parameter& andK as a function o only. To this end, we
We now consider a simpler network model having all thedefine a function® in the following way:

essential properties of the previous model. That is, the net-
work is made ofN pulse-coupled excitatory excitable units D (X(uh)= lim E[X((uh)] (3.5
having a relative refractory period. To simplify the model we N—oo
consider that all the connections have the same transmission
delay, greater than the duration of the absolute refractory is the random operator defined by the noise probability
period. We also set a finite durationof the relative refrac-  distribution and by the random matriXC;; ], where theC;;
tory period. The neurons update their potential in discreté@re random variables having all the same probability law, i.e.
time: the law that is used when a network is bigee Sec. )l E
denotes the expectation with respect to the probability distri-
. gl 1 bution of I'. Thus, ® gives the next expected macrostate
Vi=U(t=T)+ Rzl cija; ~+Bj, (3D X! as a function ofX(u), whenN—oo.
= We now derive the componenis, (1<k<n) of &:

Ut)=Unexp—tit,y) if t<n, (3.2

1 N
VY= F| = t+1_
U(t)=0 otherwise, E[><|<(F(M))]—E,\li§,1 SU-Uk)| (3.6

Ti=t if Vi=g, 3.3 =P{U" ' =U(k)} 3.7
wherea} take_s thte_value 1 if_negrohs fired at iterationt, _ =Pr{(U‘1=U(k—1))ﬂ(U(k)
and 0 otherwiseB; is the realization of a centered Gaussian
random variable of variance?®. All the parameter values are +(JIK)Y B <)), (3.9

the same as for the previous model; we just restgléy

dividing it by the sum of the transmission delay vatland  where Pr denotes the probability ad@x) equals 1 ifx=0,

the rise timet, of the EPSP’s which were used for the modeland 0 otherwiseY is the random variable corresponding to
studied in Sec. IIn is taken to be largen=24), so that the number of elementary inputs received by a neuron. When
U(n—1) is close to zero. N—o, we have
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FIG. 7. Dynamics of the activity leved' (dimensionlessobtained with the mag@ [Egs.(3.10—(3.13], with o2=1.8 and for different
coupling constantd. t here is the time in numbers of iteration steps.

+oo where var denotes the variance with respect to the probabil-
deX(u))=xt_, > PHY =y} ity distribution of I'. Thus, for a given initial microstatg
y=0 and a large numbeN of neurons, it is expected that the
XPHBY" '<9—U(k)—(J/K)y} (3.9  Sequence

and the probability law ofY approaches a Poisson law of X t=d (X (3.19
parameteKS. Thus ¢, (1<k<n) is given by

provides a good approximation of the dynamics of the mac-

AX())=xt_(1—P(Sh) (3.10  rostateX over at least one iteration. The important point now
k=1 ’ : t_ tr,0 -
is that u'=9'(«") should also be considered as a random
2 (KS)Y variable. If the microscopic variablé$; (1=<i<N) are sto-
P.(S)= “KS,(9—U(K)— (JIK)Y), chasug:ally md_ependen;, then one can show that relation
(S ygo y! e p(0=U o~ (IK)y) (3.15 indeed gives the time course of the macrostate of large

(3.1) networks. Such an independence of tde would be ob-
tained, for instance, in a network where the connections are
wherep is the Gaussian repartition function with mean zerorerandomized at each iteration. Approximating a system,

and variances?. In the same way, we derivg; and ¢, : with fixed relations between its units, by a system where
these relations are reshuffled during time can lead to a good
B1(X(1h))=S'(1—P,(S)) (3.12 estimation of the system propertigkl]. In the present study,

the network connections are fixed during time. Nevertheless,
. X . . by considering only the asymptotic independence among fi-
Hn(X(11))= (Xn_1 %) (1= Pp(S)). (313 njte subsets of the microscopic variables, An{22] dem-
onstrated that such a map provides a good approximation
® gives the mean macrosta& X' 1], over all the networks of the macrostate dynamics of sparsely connected networks
with parameteK, as a function oX(u'), whenN—o. We  with frozen connections. Moreover, many numerical studies
have now to examine how far from this mean value the macf23], carried out with different models of sparsely connected
rostates of the individual networks are. Actually, using theneural network models, are in agreement with Amari’s re-

properties of the variance, we can show that sult. The important result that we want to stress in this paper
is that the behavior of the magp that we obtained is in
lim va X(T'(u!))]=0, (3.14  excellent agreement with the networks’ simulations pre-

N—co sented in Sec. Il.
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FIG. 8. Dynamics of the activity leved' (dimensionlessobtained with the ma@® [Eqgs.(3.10—(3.13], with J=12 and for different
noise amplitudes?. t is the time in numbers of iteration steps.

Indeed, the dynamics of the activity level computed higher noise levels. Finally, whea? is greater than 3.95,
with the map® have the same dependencies on the couplingscillations disappear. Thus the dynamics of mapave the
strengthd and the noise amplitude? as those observed in exact same dependenciesbando? as those described for
network simulations. Figure 7 shows the effect of the cou-Simulated networks in Sec. II.
pling strengthd, with o?=1.8, on the time course & ob- In the parameter ranges for which oscillations were ob-
tained with Egs.(3.10, (3.1, (3.12, and (3.13. With a served, except for strong valuesdbbr for low values ofo?,
weak Coup"ng, after a few iterations the activity level re- varying the initial conditionXO did not lead to different be-
mains constant at a low level. A% is raised, oscillations haviors. That is, only oscillations &, and no constant ac-
appear and their amplitude increases smoothly dithvith ~ tivity levels, were obtained. Therefore, to determine the pa-
strong coupling strengths, the activity rises to a high level afameter values allowing oscillations, it is interesting to find
which it remains constant. the macrostateX such thatS will be kept constant over

Figure 8 shows the effect of the noise amplitucfeon the ~ time. Actually, such macrostates are the locally stable fixed
activity dynamics wherJ=12. With a very low noise am- Points of the mapd®. Indeed, using Egs(3.10, (3.11),
plitude (c2=0.63) S is maintained constant at a low level. (3.-12, and (3.13, we find that a macrostatex*
When o2 overtakes a threshold value close to 0.7, oscilla-= (X1 , - - . X3), with activity level S*=1—xI —--- —xg,
tions appear brutally with a nonzero amplitude. Thengéas s a fixed point ofd® if it is solution of the nonlinear system:
is further increased, the frequency of the oscillations mo- K
notpnously increases. The amplitude i.ncreases witeiis ' Xk=SH 1-Pi(S) (1<k<n),
varied from 0.7 to 1.1, and progressively decreases with j=1
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n 1
X“:S,Hl (1—P;(9)/P(S). (3.16 @

System(3.16 can be reduced to a single equationSrby |
adding all the lines and using the relati@=1—x;—- - - i
—Xp. This equation can be solved numerically and, o8te
is obtained, thex§ (1<k=n) values can be deduced from ¢
Egs.(3.16). Thus, Eqs(3.16) define a one-to-one correspon- g 4-

dence betweeX* and S* which is the activity level kept //
constant over time wheK* is stable. The local stability of
X* can be studied by linearizing systd8116) near the fixed
point,

0.6

O(X*+A)=X*+I[D(X*)]A, (3.17) 15 20 25

whereJ is the Jacobian matrix anfl a small perturbation. 0.3

X* is locally stable if all the eigenvalues df® (X*)] have (b) ,"/ T~

a modulus less than 1. /
For different sets of parameters, the fixed poktswere

computed and their local stability was examined. Figues 9 0.2

represents the activity lev&* of the fixed pointsX* as a .

function of the coupling), with o?=1.8. Thick continuous \

lines correspond to the locally stable fixed points, the thin \ L

dotted line corresponds to the unstable points, and the thict | ¢+ b

dashed lines indicate the minimal and maximal valueSof  0.17 T

when oscillations occur. Whehis varied from 0 to 25,the | T /

branch of the fixed points presents two successive folds

With a weak coupling, there is only one locally stable fixed L/ _...—-"/

point, referred to ak, andS is kept constant at a low level. 0 A e

WhenJ is close to 9.6, a Hopf bifurcation occur24]. The 0 1 2

fixed point loses its stability and oscillations appear with a

very small amplitude. As) increases, this amplitude rises.  FIG. 9. Activity levelsS* at the fixed points of the map [Egs.

WhenJ is close to 13.85 a locally stable fixed point appears(3-10—(3.13] as a function of the coupling, wheno?=1.8 (a),

through a saddle-node bifurcation, with a high activity level.and as a function of the noise amplitudé, whenJ=12 (b). S, J,

We denote this stable fixed point by. Oscillations are still and o are dimensionless. Thick solid lines correspond to the lo-

possible untild=15.4. Thus, forJ between 13.85 and 15.4 cally stable fixed pointsH stands for locally stable fixed points
the system is bistable: depending on the initial COﬂditiOI’],With a high activity level, and. for locally stable fixed points with
low activity level. Thin dotted lines correspond to unstable fixed

networks display sustained oscillations or stabilize at a higr"f1 ) _ : o . .
activity level. At J=15.4, oscillations collide with a saddle points, and th'Ck. anhed lines '”d'C?‘te _the minimal and maximal

. . . . values of the activity leve§ when oscillations are present.
point and disappear through a saddle-loop bifurcation.

In Fig. 9b), J is kept constant at 12, and the noise am-puted the values al and ¢ at which the fixed points lose
plitude o2 is varied from O to 5. With low noise amplitudes their stability. The result is presented in Fig. 10. Continuous
(02<0.7) there is a locally stable fixed point with a low lines partition the parameter pland,{?) into different re-
activity level S* increasing witho®>. When o2 is close to  gions according to the stability of the fixed pointsandH
0.7, a Hopf bifurcation occurs, and oscillations appear with astand for the region where there exists only one locally stable
nonzero amplitude. |2 is then decreased, oscillations per- fixed point with, respectively, low and high activity levels
sist until 02=0.67, where they disappear with a nonzeroS*. LH indicates the bistability region where the two stable
amplitude. Thus, for? between 0.67 and 0.7, the system isfixed points coexistO is the region where oscillation is the
bistable, as both a stable fixed point and stable oscillationenly asymptotically stable regime. In regi@H, depending
coexist. Wherno? increases beyond 0.7 the amplitude of theon the initial condition, the system will either oscillate or
oscillations rises sharply untir®=1.05, and then progres- maintain a constant high activity level. Thick lines indicate
sively decreases. Far?=3.95 the fixed point regains its the positions of the two folds presented in Figa)9 The left
stability through a second Hopf bifurcation. It should bethick line in Fig. 10 corresponds to the higher fold, where the
noted that the characteristics of the oscillations vary with  saddle-node bifurcation takes place, and the right thick line
in a way similar to what was obtained with simulated net-indicates the lower fold. In Fig. 10, the two thin dotted lines
works (see Fig. 8. represent two new folds that appear at a cusp-at3.6 and

Figures 9a) and 9b) show that there is a region of the ¢>=0.55, below the lower fold of Fig.(@). The lowest of
parameter planel(o?) where the system has no stable fixedthe two new folds takes place at large values)pfor low
points. In this region the system stabilizes into an oscillatorywalues of 0. Consequently, the branch of the low stable
activity. To delimit this region of parameter plane, we com-fixed pointsL also extends to larger values than the position

e,

3 4 5
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FIG. 10. Stability regions of the different regimes obtained with  FIG. 11. Stability regions of the different regimes obtained with
the mapd in the parameter planel(c?) for a sparsely connected the map® in the parameter planel{o?) for a fully connected
network (K=15). BothJ and (J,¢?) are dimensionless. Solid lines network (K=N—1). Same legends as in Fig. 10.
partition the plane according to the local stability of the fixed
points. In regions. andH there is only one locally stable fixed receive permanently strong inputs. Except whda close to
point, with, respectively, a high and low activity levidee Fig.  the left thick line of Fig. 10, varying the noise amplitude
9(a@]. In regionLH both stable fixed points coexist. In regi@ only does not allow the system to escape from the fixed point
only oscillations are asymptotically stable.@H the system either | and the coupling has to be lowered. Switching back and
oscillates or ;ettlgs into a stable fixed point with high actlivity level. forth from oscillating to nonoscillating regimes is different in
The dashed line is the boundary betwéit andH. The thick left o qigng of monostability than in regions of bistability. In
line corresponds the higher fold of Figi@, and the right thick line regionsL and O, such switching can be obtained only by
to the lower fold of Fig. %). varying the system parameters. In regidH, changes of the

of the lowest fold in Fig. €8), wheno? is small. regime can also be obtained by a simple perturbation of the
From Fig. 10, we can draw three conclusions regardingystem. )
the generation of noise-induced oscillations. To complete our study of the parameter values allowing

(1) There exists a wide region of the parameter planeoscillations to occur, we have also examined the effect of the

(J,02) where noise-induced oscillations can occur. Oscilla-network connectivity, i.e., the effect of parametér This
tions are not present in the absence of ndisee Fig. 10 study is presented in Sec. IV, where we consider the case of
when¢2=0). This is consistent with what was observed in@ fully connected network.

the network simulations presented in Sec. Il. When starting

from an oscillating activityregionsO or OH), if the noise is IV. FULLY CONNECTED NETWORK

suppressed, the activity dies out; that is, the system settles
into the fixed pointL, corresponding tdS* =0 when o2
=0.

(2) Many different scenarii can lead to oscillations. If the
system starts from regidn, with 0.3<¢?><5, increasing the
coupling J will lead to oscillations through the Hopf bifur-
cation presented in Fig.(8. If o2 is less than 3.4, a further
increase of] will lead to the disappearance of these oscilla-
tions, as in Fig. @), when they collide with a saddle point
kicking the system toward the fixed poiHt If o2 is greater
than 3.4, before stabilizing iR, the system will first pass
through a stable fixed point of typke, localized near the
Io;/ver fold of Fig. 9a). Wh_en star_ting from regior?l, with . P(S)=p(6—U(k)—J9). 4.0
=0 and 9.8kJ<15.2, increasing only the noise ampli-
tude will make oscillations appear and disappear through the Simulations of this new mag showed that oscillations
two successive Hopf bifurcations presented in Figp) 9 were still possible in a fully connected network. We also

(3) For such oscillations, induced by varying, the situ-  checked that such oscillations are obtained in simulations of
ation is quite different when the system does not start fronthe network model presented in Sec. I, whHésrN—1. We
regionL but rather from the bistable regidm . In this case, did the same study of the fixed point stability of the nibp
to obtain oscillations, the initial condition has to be the loweras in Sec. lll. The results for the fully connected network
fixed pointL. WhenJ is greater than 15.2, increasing will model are presented in Fig. 11, with the same legends as in
lead first to oscillations and then to stabilization into theFig. 10. Regiond and H, where there is only one stable
higher fixed point. Once the network is locked in this higherfixed point, are still present, as well as the regith$ and
fixed point, neurons discharge with a high frequency andOH of bistability. The main difference with the sparsely con-

We now consider the same network mo¢ill) as in Sec.

I, with the same parameter values, except for the connec-
tivity parameterK that we set equal tdN—1. Thus each
neuron emits a connection to all the other neurons and re-
ceives connections from all the other units. With such a fully
connected network, there exists a unique connection matrix
[cij]. Consequently, the derivation of the mdp, which
gives the dynamics of the macrostateis considerably sim-
plified compared to the case of the sparsely connected net-
work. The dynamics ofX is described by the same set of
equationg3.10, (3.12 and(3.13, but this time with
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nected network is that there is no longer a regidrwhere called a burst, followed by a refractory period during which
only oscillations are asymptotically stable. Thus, with thisthe network is less sensitive to a new stimulation. We have
fully connected network, oscillations occur only in regions of shown that in such an excitable system, the regularity of the
bistability. This implies that the generation of noise-inducedoscillations is a nonmonotonic function of the noise ampli-
oscillations depends on the initial condition, and that the ostudec?. This relies on the differential dependenciessgnof
cillation regime is sensitive to perturbations of the activity of the interburst interval and the burst duration. Such a mecha-
the network units. We examined how this result was sensiliSm is qualitatively similar to what was proposed by Pik-
tive to variations of the model parameters. We found thaPVSky and Kurths for so called “coherent resonance” with a
varying the membrane time constagt, the after-spike hy- single F!tzHugh neuron modélZ]. Meanwhlle,_ the. system
perpolarizatiorlJ, or the firing threshold could lead to the W€ Studied here is not a single neuron. Noise is imposed
appearance of a regid for a fully connected network. The upon a large number of neurons, and a burst is ignited when

effects of these parameters on the generation of oscillatiors fraction of them fires within a short time window. The
, 1ese p e g . r}%gularity of the oscillations is therefore not related to the
will be detailed in a further publication. The main result that hreshold crossing of a single neuron, but to the average

we want to stress in this paper is that, for a given set of,qqe induced spiking over a large population. Thus, pro-
parameters, the regio@, in which oscillations only are as- jged the number of neurons is large, oscillations can be

ymptotically stable, is always much wider in a sparsely conyite regular. To study the dependence of these oscillations
nected than in a fully connected network. This effect of theg, the noise amplitude, we have derived a discrete map
connectivityK can be sketched using Fig(e as follows:  \yhich gives the dynamics of large networks. A similar map
for a given value of the noise amplitude?, whenK is  haqd been previously studied by Bauer and PawdRe for
increased, the higher fold is moved toward lower couplingihe particular case of a fully connected network with trans-
constants), whereas the lower fold and the region where thepission delays very short compared to the duration of the
fixed pointL loses its stability, and where oscillations occur, neyron refractory period. The map we derived in the present
is moved toward higher values df So, finally, when the  study is more general, and can also account for the dynamics
network is fully connectedK=N-1), regionO has be- of sparsely connected networks. Moreover, we have not only
come smaller. In other words, the stronger the connectivi%umerica"y studied the map dynamics, but have also deter-
is, the more the network is likely to settle into the saturatednined and analyzed its bifurcation structure. This led to the
firing stateH. conclusion that noise induced oscillations can occur over
wide ranges of the network parameters, and that there exist
V. CONCLUSION two different situations for the generation of oscillations. Ei-

ther oscillating is the only asymptotically stable regime, or it

tior\1Naenzac\)/secisllg?i\:)vr?st?r?;?loéiiia?;e ﬁi?v\;g?; g? sggclzr;g'fgccurs in a parameter region of bistability where the system
y b can also settle into a state of high frequency firing of the

citable neuron models. Similar oscillations were first re-
neurons. We have shown that sparsely connected networks

ported by Macgregor and Palasek in simulations of neuro . . .
pools[25]. In the present study we have explained how sucr?:lre more likely than fully connected networks to display os

e : ; cillations robust to perturbations.
oscillations are produced. The whole network is an excitable
system which responds to an initial noise-induced firing of The authors thank D. R. Chialvo, O. Arino, P. Y. Boelle,

neurons with a transient amplification of the activity, that weand H. Fukai for very helpful comments on this work.
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